Sexual identity and behavior in an online sample of Indian men who have sex with men

Maria L. Ekstrand, Shruta Rawat, Pallav Patankar, Elsa Heylen, Asha Banu, B. R. Simon Rosser & J. Michael Wilkerson

To cite this article: Maria L. Ekstrand, Shruta Rawat, Pallav Patankar, Elsa Heylen, Asha Banu, B. R. Simon Rosser & J. Michael Wilkerson (2016): Sexual identity and behavior in an online sample of Indian men who have sex with men, AIDS Care, DOI: 10.1080/09540121.2016.1271103

To link to this article: http://dx.doi.org/10.1080/09540121.2016.1271103

Published online: 27 Dec 2016.
Sexual identity and behavior in an online sample of Indian men who have sex with men

Maria L. Ekstrand a,b, Shruta Rawat c, Pallav Patankar c, Elsa Heylena d, Asha Banud e, B. R. Simon Rosser e and J. Michael Wilkerson f

aDivision of Prevention Science, Department of Medicine, Center for AIDS Prevention Studies, University of California, San Francisco, CA, USA; bSt John’s Research Institute, St John’s National Academy of Health Sciences, Bengaluru, India; cThe Humsafar Trust, Mumbai, India; dThe Tata Institute of Social Sciences, Mumbai, India; eDivision of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA; fSchool of Public Health, The University of Texas Health Sciences Center at Houston (UTHealth) Houston, TX, USA

ABSTRACT
Indian men who have sex with men are disproportionately impacted by HIV. While prevention efforts to date have focused on men who visit drop-in centers or physical cruising sites, little is known about men who are meeting sexual partners on virtual platforms. This paper explores issues related to sexual identity and sexual behaviors in an online sample of men who identified as gay (n = 279) or bisexual (n = 123). There were significant differences in outedness between the two groups, with 48% of bisexually identified men reporting that they were out to “no one” and 82% stating that they present themselves as heterosexual to family and friends. Corresponding rates for gay-identified men were 15% and 41%, respectively (both p < .001). Twenty-nine percent of bisexually identified men reported being married, compared to only 3% of the gay-identified men (p < .001). Bisexually identified men were also more likely to report having exclusively insertive anal sex (49% vs 30% p < .001), while gay-identified men were more likely to report exclusively receptive anal sex (41% vs 13% p < .001). Rates of unprotected anal sex (UAS) in the two groups were similar; however, married men were significantly more likely to report unprotected vaginal sex (76% vs 35%, p < .012). Positive attitudes toward UAS and lower self-efficacy were associated with sexual risk in both groups; however, substance use was associated with sexual risk only among bisexually identified men. These findings show that a large proportion of Indian bisexually identified men lead closeted lives, especially in their interactions with friends and family, with the vast majority presenting as heterosexual. The lower condom use with wives may be due to societal pressures to have children. The results suggest that bisexually identified men may benefit from targeted programs and non-directive, non-judgmental individual or couples counseling which emphasizes condom use with both male and female partners.

Introduction
Indian men who have sex with men (MSM) and transgenders/hijras are disproportionately impacted by HIV due to limited awareness of HIV, sociocultural stigma associated with same-sex attraction and gender nonconformity (Kumta et al., 2010; National AIDS Control Organization, 2011; Thomas et al., 2011; Tomori et al., 2016) and criminalization (“Koushal v NAZ Foundation”, 2013). Existing literature shows that MSM and transgenders/hijras are vulnerable to mental health issues and physical violence from families, sexual partners, and legal authorities and that this can be a barrier to PrEP (Chakrapani, Newman, Shumugam, Logie, & Samuel, 2015; Mimiaga et al., 2013; Sivasubramanian et al., 2011; Thomas, Mimiaga, et al., 2009; Thomas et al., 2011; Tomori et al., 2016). These factors could further invisibilize Indian MSM and transgenders/hijras, adding to their HIV vulnerability by increasing their closetedness. While some of these studies explore associations of mental health and violence against Indian MSM and transgenders/hijras, they do not take into account the impact of closetedness on mental health and risk-taking behaviors, bringing forth a need for studies investigating these issues.

Indian MSM’s sexual identities discussed in literature are limited to kothis (feminine acting/appearing and predominantly receptive during anal sex), panthis (masculine acting/appearing and predominantly insertive during anal sex), and double-decker/versatile (both insertive and receptive during anal sex). Though these identities are still common among Indian MSM, recent observations indicate the emergence of gay and bisexual identities (Dodge et al., 2016), especially among MSM of higher education and income.
Mostly missing from these discussions about emerging sexual identities is the effect of relationship dynamics of MSM with their female partners, which is understood only within the scope of marriage or MSM as a bridge population for HIV infection (Asthana & Oostvogels, 2001; Dodge et al., 2016; Godbole et al., 2014; Kumta et al., 2010; Ramakrishnan et al., 2015; Setia et al., 2006; Thomas, Mayer, et al., 2009; Thomas, Mimiaga, et al., 2009). Heterosexual marriages are attributed to pressure on MSM stemming from the cultural emphasis on marriage (Asthana & Oostvogels, 2001; Kumta et al., 2010). These married MSM lead dual lives, and their sexual identities and acknowledgment of risky sexual behaviors vary as per circumstances (Asthana & Oostvogels, 2001; Dodge et al., 2016; Godbole et al., 2014). Different identities adopted by Indian MSM in different familial and sexual scenarios, their extent of closetedness, and the influence of these behaviors on safe-sex practices remain inadequately investigated. With global evidence highlighting associations between closetedness and risky sexual behaviors (Ross, Rosser, & Neumaier, 2008; Ross et al., 2001, 2013), it is crucial to understand these issues within Indian contexts as well.

In India, much of the HIV intervention research and practice has focused on MSM and transgenders/hijras with more traditional identities and who meet male sex partners offline (Kumta et al., 2010; Mimiaga et al., 2013; Saffren et al., 2006; Setia et al., 2006; Sivasubramanian et al., 2011; Thomas, Mayer, et al., 2009; Thomas et al., 2011; Tomori et al., 2016). There is less focus on MSM with emerging gay/bisexual identities, who are also potentially more likely to meet men on virtual cruising sites, their mostly higher income and education potentially affording them access to the internet and mobile technology. A 2013 study by our community-based partners highlighted behavioral differences between internet-using MSM and MSM investigated by other studies in India. Welles et al. (2011) also highlighted behavioral differences between internet-using Indian MSM and their western counterparts. With limited research-based insights into demographics, risk and identities of internet-using Indian MSM and transgenders/hijras, it is crucial to investigate HIV- and sexuality-related knowledge, attitudes, beliefs, and behaviors particularly as this population may also not ascribe to traditional sexual identities adopted by the much-researched Indian MSM and transgenders/hijra population on physical sites who fall within the reach of traditional HIV interventions.

While our larger study focused on HIV-related risk behaviors of internet-using MSM and transgenders/hijra, this paper focuses on their sexual identities and sexual behavior while providing insights in their closetedness, sexual attraction and presentation of self-identities.

Methods

Data presented here are from a larger mixed-method study titled Project ISHKonnect (Love Connect) that was implemented in Maharashtra, India from September
2013 to May 2014. Maharashtra is India’s third largest state with a population of 112 million people and Mumbai as capital. It has been classified as a high HIV prevalence state by India’s National AIDS Control Organization (NACO). As one of India’s wealthiest and most industrialized states, Maharashtra attracts migrants and tourists from across India.

Recruitment

Recruitment was done over online media and by maintaining a social media presence on Facebook and has been described elsewhere (Wilkerson et al., 2016). Briefly, we created a Facebook page to share study information and generate interest. Recruitment also happened on online sex-seeking websites that ran banner advertisements in Hindi and English and at offline events like LGBT film festivals. The most popular platforms for seeking sexual partners at the time were websites such as Planet Romeo and Hornet.

Eligibility, screening and consent

Eligible participants had to self-identify as MSM or transgender/hijra currently residing in Maharashtra, be over 18 years, have regular Internet access, and have had sex with at least one MSM or transgender/Hijra partner in the last three months. Consent was obtained online in Hindi, Marathi, or English from all participants prior to directing them to the questionnaire.

Compensation and ethical approval

Upon survey completion, participants were given a choice of either an online gift voucher or passes to LGBT events as a token of appreciation, valued at Rs. 300 (approximately $5 US). The institutional review boards at of the authors’ home institutions approved the study procedures.

Measures

The structured online survey took approximately 30 minutes to complete, and was available in Hindi, Marathi, or English – languages of which at least one is known by virtually all Maharashtra residents. Ninety-six percent of participants completed the survey in English. Most measures were based on existing ones and adapted for the Indian context.

Sexual identity and presentation

Sexual identity was based on the question “Which of the following options best describes how you think of yourself?” with the response options gay/homosexual, bisexual, straight/heterosexual, kothi, panthi, double-decker/versatile, hijra/transgender, queer, MSM, and “other”. These same response options were used to ask participants how they mostly presented themselves to “family and friends”, in an “online profile for seeking male sex partners”, and “to male sex partners you meet offline”. These items were adapted from the European MSM Internet Survey (EMIS) (Weatherburn et al., 2013).

One question (modified from the US Men’s INTernet Study) (Rosser et al., 2010) asked how open or “out” the participant was about being attracted to other men, with the original 5-point response scale reduced to 3, ranging from “out to no one” to “out to most/all people I know”. This item has been found to perform similarly to a multi-item outness scale and minimizes participant burden (Wilkerson, Noor, Galos, & Rosser, 2015).

Sexual behavior was assessed using items from the Men’s INTernet Study (Rosser et al., 2010) that asked participants for the number of primary and casual male partners with whom they had had protected or unprotected, insertive or receptive anal sex in the past three months. These questions were asked separately for men met online and offline. No other relationship questions were asked. All items were dichotomized as any (1) vs. none (0). Sex with women was only assessed for female primary partners. Participants were asked how many times in the past three months they had had vaginal sex and anal sex with this woman, and for how many times they had used a condom. The variables were dichotomized as any (1) vs. no (0) vaginal/anal sex, and always protected (0) vs. unprotected (1; sex without condom at least once). Only participants in a long-term relationship with a woman were asked if they were married to her.

We also asked participants their HIV status (positive/negative/don’t know).

Positive attitude toward anal sex without condoms (Halkitis, Parsons, & Wilton, 2003) was calculated as the mean of nine items assessing the level of agreement with positive aspects of unprotected anal sex (UAS) (e.g., makes sex more romantic), with answer categories ranging from 1. “strongly disagree” to 7. “strongly agree”. Internal consistency in the current sample was Cronbach’s α = 0.94.

Condom use self-efficacy (MINTS III) (Marín, Gómez, Tschann, & Gregorich, 1997) was the mean of 11 items, measuring on a 1–5 scale how sure (“not at all” to “completely”) the participants were that they could adhere to using condoms properly in different situations (e.g., without breaking the mood). Cronbach’s α = 0.89.
Risk of harmful alcohol use was assessed via the 3-item AUDIT (Bush, Kivlahan, McDonell, Fihn, & Bradley, 1998) assessing frequency and amount of alcohol use, and binge drinking in the past year. The summed score ranges from 0 to 12, and, per scoring guidelines, was dichotomized as <4 vs. ≥4 for no/low risk vs. (high) risk, respectively. The scale has been validated for use in India (Pal, Jena, & Yadav, 2004).

Substance use: frequency of non-medical use in the past year was assessed for nine types of prescription and non-prescription drugs (e.g., marijuana and erectile enhancers). This measure was developed for this study. For analysis, we dichotomized the responses as any (1) vs. none (0), given the low frequency of substance use reported.

Depression was assessed via the 10-item version of the CES-D (range 0–33) and dichotomized at the recommended cut-off score of 10 for mild-to-severe depressive symptoms (Zhang et al., 2012). Cronbach’s α = 0.75.

Demographics included age, highest education completed and whether currently studying, income class, religion, residence (greater Mumbai/Thane vs. elsewhere), and legal marital status.

Analysis

Given the small sample sizes of other classifications, we only included participants who identified as gay (n = 279) or bisexual (n = 123), comprising 90% of the total sample of 449. Demographics, sexual behavior with males and related characteristics of these two groups were described via frequencies and percentages for categorical variables and median and interquartile range (IQR) for age. Differences between the groups were assessed via chi-square and Mann–Whitney U test, respectively. For sex with females, the number and percentage of participants having sex, and specifically sex without a condom, were compared between married and unmarried participants, via Fisher’s exact test due to low frequencies. This change in comparison from groups with a different sexual identity to groups with a different marital status was motivated to account for the pressure in Indian society to have children and hence not use contraceptives such as condoms, once married.

In a next step, potential correlates of UAS with male casual partners (past three months) were examined. Unprotected receptive (URAS) and insertive (UIAS) sex were treated as separate, but not mutually exclusive outcomes. For each outcome, we combined sex with on- and offline partners, and included reports of no anal sex of that kind at all as a 0 response, indicating “no unprotected sex”. Our exploratory analyses suggested that different variables were associated with UIAS and URAS for gay-identified than for bisexual-identified men; hence, we ran separate analyses for the two subgroups. We thus had four dichotomous outcome variables: UIAS and URAS of gay-identified men and UIAS and URAS of bisexual-identified men. For each, we examined which variables were significantly bivariately associated with the outcome. For categorical variables, we used chi-square test, or Fisher’s exact test if expected cell sizes were below 10. For continuous predictors, we used t-tests after confirmation they were reasonably normally distributed. Variables associated at p ≤ .10 were subsequently included in a multivariate logistic regression model for the outcome in question. Analyses were performed in SPSS v22. All significance levels reported are two-sided and p < .05 was considered statistically significant.

Results

Of the 6049 individuals who clicked on the survey link, 745 completed the online consent form. Of these, 477 completed the survey and 449 persons were included in the final dataset; 402 identified as gay/bisexual and are analyzed here. As shown in Table 1, there were no significant differences between gay- and bisexual-identified men with respect to age, income, religion, and depression levels. Depression levels were very high in this sample, with more than half the men in both groups being classified as depressed. Gay-identified men were significantly more likely to live in the urban metro of Mumbai–Thane compared to bisexual-identified men (81% vs. 60%, respectively). Presentation to online and offline sex partners was consistent with identity. However, bisexual-identified men were much less likely to be out to family and friends, with 82% reporting that they present themselves as heterosexual in those situations, compared to only half as many gay-identified men (41%). Bisexually identified men were also significantly more likely to report that they are out to no one than were gay-identified men (48% vs. 15%) and 29% of bisexually identified men reported being married, compared to only 3% of the gay-identified men.

Among men who reported at least some anal sex with casual partners in the past three months, there were significant differences with respect to position, with bisexual-identified men stating that they were most likely to have only insertive sex (49%), whereas only 30% of the gay-identified men stated a preference for only insertive sex (Table 2). In contrast, 41% of gay-identified men reported only having receptive anal sex, compared to 13% of bisexual-identified men. Overall, condom use
was similar in the two groups; however, bisexually identified men were marginally more likely to report unprotected insertive anal sex than gay-identified men (22% vs. 13%, \(p < .059 \)).

As shown in Table 2, 5% (\(n = 14 \)) of gay-identified men vs. 49% (\(n = 58 \)) of bisexually identified men had a primary female partner (\(p < .001 \)). Of these 72 participants, 43 (60%) were married to this primary female partner. Eighty-one percent (\(n = 58 \)) of the married men reported vaginal sex in the past three months, compared to 65% (\(n = 17 \)) of unmarried men (\(p = .158 \) and a significantly larger proportion of married men (76%) than of unmarried men (35%) reported unprotected vaginal sex (\(p = .012 \)).

Tables 3 and 4 show that there were both differences and similarities in the correlates of UAS with a casual partner in the two groups. Among gay-identified men, lower condom use self-efficacy was associated with both URAS and UIAS, while a higher score on positive attitudes towards sex without condoms was only associated with URAS.
bisexually identified men are more likely to be married than gay-identified men.

In terms of risk behaviors, bisexually-identified men reported being marginally more likely to have unprotected insertive anal sex than did gay-identified men. This may be due to having received fewer targeted messages, which in turn resulted in poorer knowledge regarding the sexual risks involved. A study examining differences between married and unmarried MSM conducted in Mumbai (Kumta et al., 2010) supports this observation and highlighted the reluctance by MSM in sexual relationships with women to access HIV prevention, due to fear of disclosure of covert same-sex relationships and of losing family support. Approximately a third of all men reported having unprotected sex with casual male partners and this proportion was similar for unmarried men during sex with women. Married MSM, on the other hand, reported much higher rates (75%) of unprotected sex with women, presumably due to pressure to have children or to condoms being seen as a breach of trust in a supposedly monogamous relationship.

Sexual risk taking was significantly associated with positive attitudes toward sex without condoms and lower condom self-efficacy among both gay- and bisexually-identified men. Risk was also significantly associated with substance use among bisexually-identified men and marginally associated with alcohol use among gay-

Table 3. Correlates of unprotected sex with casual partners among gay-identified men.

<table>
<thead>
<tr>
<th>Substance use</th>
<th>Receptive (n = 249)</th>
<th>Insertive (n = 250)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%) men reporting URAS</td>
<td>AOR (95% CI)</td>
</tr>
<tr>
<td>No</td>
<td>33 (14.5)</td>
<td>16 (7.0)</td>
</tr>
<tr>
<td>Yes</td>
<td>8 (16.0)</td>
<td>6 (12.0)</td>
</tr>
<tr>
<td>Risk harmful alcohol use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/low risk</td>
<td>26 (12.6)†</td>
<td>13 (6.3)†</td>
</tr>
<tr>
<td>Risk/high risk</td>
<td>15 (20.5)</td>
<td>9 (12.3)</td>
</tr>
<tr>
<td>Present straight to family & friends</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>21 (13.7)</td>
<td>10 (6.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>19 (18.1)</td>
<td>11 (10.5)</td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (CES-D10 < 10)</td>
<td>12 (10.6)</td>
<td>7 (6.2)</td>
</tr>
<tr>
<td>Yes (CES-D10 ≥ 10)</td>
<td>28 (17.2)</td>
<td>15 (9.2)</td>
</tr>
<tr>
<td>Pos attitude unprotected sex (1–7)</td>
<td>3.7 vs. 2.6***</td>
<td>1.2 (1.0–1.5)*</td>
</tr>
<tr>
<td>Condom self-efficacy (1–5)</td>
<td>3.2 vs. 3.9***</td>
<td>0.5 (0.4–0.8)**</td>
</tr>
</tbody>
</table>

Note: URAS and UIAS are not mutually exclusive. Receptive and Insertive columns show results from separate analyses on the same sample.

Table 4. Correlates of unprotected sex among bisexually identified men.

<table>
<thead>
<tr>
<th>Substance use</th>
<th>Receptive (n = 113)</th>
<th>Insertive (n = 123)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%) men reporting URAS</td>
<td>AOR (95% CI)</td>
</tr>
<tr>
<td>No</td>
<td>17 (15.5)</td>
<td>12 (10.9)***</td>
</tr>
<tr>
<td>Yes</td>
<td>2 (15.4)</td>
<td>7 (53.8)</td>
</tr>
<tr>
<td>Risk harmful alcohol use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/low risk</td>
<td>15 (14.6)</td>
<td>16 (15.5)</td>
</tr>
<tr>
<td>Risk/high risk</td>
<td>4 (20.0)</td>
<td>3 (15.0)</td>
</tr>
<tr>
<td>Present straight to family & friends</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2 (10.0)</td>
<td>2 (10.0)</td>
</tr>
<tr>
<td>Yes</td>
<td>16 (17.2)</td>
<td>16 (17.2)</td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (CES-D10 < 10)</td>
<td>11 (19.3)</td>
<td>7 (12.3)</td>
</tr>
<tr>
<td>Yes (CES-D10 ≥ 10)</td>
<td>7 (11.9)</td>
<td>10 (16.9)</td>
</tr>
<tr>
<td>Pos attitude unprotected sex (1–7)</td>
<td>4.3 vs. 3.1*</td>
<td>1.2 (0.9–1.7)</td>
</tr>
<tr>
<td>Condom self-efficacy (1–5)</td>
<td>3.6 vs. 4.1*</td>
<td>0.7 (0.4–1.2)</td>
</tr>
</tbody>
</table>

Note: URAS and UIAS are not mutually exclusive. Receptive and Insertive columns show results from separate analyses on the same sample.

*p < .05.
**p < .01.
***p < .001.

†p < .10.
* *p < .05.
** p < .01.
***p < .001.
identified men, but only in the bivariate analyses and became non-significant in the multivariate analyses. In general, substance use was lower in this sample than we would see in US online samples of gay and bisexual men (Benotsch et al., 2002; Klein, 2014). Additional studies are needed to better understand the relationship between risk and substance use among Indian MSM.

While it is clear that both gay- and bisexualy identified men in India need ongoing prevention efforts, the latter may be more difficult to access due to stigma and being less out to family or friends. Since messages that emphasize disclosure to one’s wife or other family members may place bisexual clients at risk for reprisals and violence from their families and communities, and decrease the likelihood that they will seek prevention services, counselors should emphasize condom use with all sexual partners as a prevention strategy along with linkages and referrals to family planning health facilities, which promote condoms as a contraceptive method and offer testing and treatment for STIs. Such non-directive and non-judgmental counseling, either for individuals or couples, has also been recommended by Chakrapani and colleagues in their technical paper prepared for India’s NACO (Chakrapani, Boyce, & Dhanikachalam, 2011).

Online interventions may provide another way to reach these more closeted men, as long as they are discrete. Given the high levels of depressive symptoms reported, such programs will likely need to include both mental health and more traditional risk reduction components in order to be effective. Since online sex-seeking patterns of Indian MSM appear similar to patterns of samples recruited in the West and other Asian countries, there might be opportunities for adapting western Internet-based interventions for Asian MSM. This needs to be explored in future research.

Finally, in order to achieve lasting change, future HIV prevention efforts thus need to include both policy interventions and community stigma reduction programs to enable India’s gay and bisexual men to live openly, without the fear of legal consequences or rejection by their families.

Acknowledgements

Research protocols were approved by The University of Texas Health Science Center at Houston (UHealth) Committee for the Protection of Human Subjects and The Humsafar Trust, the University of Minnesota, and the University of California San Francisco Institutional Review Boards.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The study, Internet-based HIV Prevention for Indian MSM (ISHKonnnect), was funded by the Indian Council of Medical Research, Division of Epidemiology and Communicable Diseases, grant number INDO-US/84/2010-ECD-II and the National Institutes of Health, National Institute of Allergy and Infectious Diseases, grant number 1R21AI094676-01.

ORCID

Maria L. Ekstrand http://orcid.org/0000-0001-7587-2899
Shruti Rawat https://orcid.org/0000-0001-9248-0272
Pallav Patankar https://orcid.org/0000-0002-2308-6738
J. Michael Wilkerson https://orcid.org/0000-0003-0815-8577

References

help in prevention interventions for this bridge to the heterosexual epidemic in India: Data from HIV sentinel surveillance. *PLoS One*, 9(9), e107439. doi:10.1371/journal.pone.0107439

International Data Corporation. (2016). *Tier 2 & 3 cities in India will spearhead the next wave of growth for the smartphone market; Apple reigns supreme at the top end*. India will spearhead the next wave of growth for the smartphone market. Apple reigns supreme at the top end. Retrieved October 22, 2016, from http://www.idc.com/getdoc.jsp?containerId=prAP41064116

